众妙之门一超弦理论初探

字数:57871访问原帖 评论数:84条评论 TXT下载

发表时间:2019-11-04 01:02:52 更新时间:2021-07-07 03:26:07

楼主:紫光慧明  时间:2019-11-10 19:27:08
暗物质"最新研究成果 已确认5个特征

来源:国际在线 2014年09月19日


[导读] 诺贝尔物理学奖得主、美籍华人科学家丁肇中教授主持的实验室18日在日内瓦公布。
丁肇中实验室公布"暗物质"最新研究成果已确认5个特征

美籍华人物理学家丁肇中

原标题:美籍华人物理学家丁肇中实验室公布“暗物质”最新研究成果

国际在线报道(记者 刘素云):诺贝尔物理学奖得主、美籍华人科学家丁肇中教授主持的实验室18日在日内瓦公布了其最新研究结果,在业已完成的观测中,暗物质的6个特征已有5个得到确认。这一研究结果将人类对暗物质的探索向前推进一大步。

上世纪二十年代,物理学家们提出了宇宙大爆炸的学说。根据这一学说,宇宙在大爆炸以前处于真空状态,大爆炸以后才形成了物质世界,据此推断就应该有反物质存在。此后,物理学家们开始了寻找反物质或称暗物质的努力。“阿尔法磁谱仪”是丁肇中教授创立的一个实验项目,于2011年5月16日被安置到国际空间站,迄今已运行四十多个月,共搜集了540亿个宇宙射线数据。刚刚公布的研究成果,是基于对最先收集到的410亿个数据的分析。

研究成果显示,在这410亿个初级宇宙射线中,共观测到约1000万个电子与正电子,这是半世纪来首次检测到的正电子分率的最大值。而正电子的多少是识别暗物质的重要指标。丁肇中教授表示,迄今的研究已确认暗物质的5个特征,还有最后一个特征待确认。“根据现在的结果,我们所找(到)的东西,一定是个新的东西,从来没有见过的东西。是不是暗物质,要看最后一个结果。暗物质有6个物征,其中5个特征都被我们观测到了,最后一个特征就是它的产生率会不会忽然降下来,这还需要花很多时间。只剩下这一个没测量出来。”

18日,丁肇中教授与欧洲核子研究中心通过视频共同向全球宣布了这一研究成果。相关研究论文发表在19日出版的美国《物理评论快报》上。
楼主:紫光慧明  时间:2019-11-10 19:53:18
这个概念是怎么来的呢?这要从一个方程讲起。



我们可以把它称作宇宙的定律,它的名字叫「爱因斯坦场方程」,它有另外一个名字叫「广义相对论场方程」,它还有一个低配版本,就是「牛顿万有引力定律」,想必知道的人可能会更多一点。

这个方程描述的是宇宙中的物质彼此之间的引力关系,但是在天文观测中,我们很多时候发现这个方程好像有不成立的情况。



暗物质就是从这样的一些反常的现象中发现的。

01 人类如何发现暗物质可能存在?

在爱因斯坦还没有出生的时候,人们用牛顿定律来理解天体运动。

当时,大家只知道太阳系有七大行星,从里到外依次是水星、金星、地球、火星、木星、土星和天王星。它们都在引力作用下绕着太阳运行。

通过牛顿万有引力定律,人们可以准确地计算出每一颗行星的运行轨迹,可以预期这颗行星今天应该出现在什么位置,明天应该出现在什么位置。不光是太阳对它们的影响,甚至行星之间的相互作用和运行规律我们都能很好地掌握,计算结果与观测结果都能对得上。

图片来自网络

唯独最外围的天王星是个例外,它的运动始终体现出那么一些不规律性,人们预期它应该在某个位置,事实上它总是会偏一点,让人非常困惑。

1843年到1846年间,两位年轻的天文学家,英国的亚当斯(John Couch Adams)和法国的勒维耶(Urbain Jean Joseph Le Verrier),他们分别通过万有引力定律推算出在天王星之外还有一颗不为人知的行星,正是它影响了天王星的运动。

1846年,德国的天文学家伽勒(Galle Johann Gottfried)用望远镜在亚当斯和勒维耶预测的天区发现了这颗行星,也就是后来为人所知的海王星。



这个事情给我们一个什么启发呢?就是说,如果你发现已有的定律什么地方不太对劲,那么这很可能意味着,在某些地方存在某些不为人知的东西。

这个现象,持续困扰着学界。

到了1930年,瑞士的天文学家兹威基(Fritz Zwicky)在观察星系团(由相互之间有一定力学联系的若干个星系集聚在一起组成的星系集团)的时候发现了一个奇怪的现象,有些星系的运动速度远远超过了它所在的星系团本身的逃逸速度。



逃逸速度是一个什么概念?大家知道,当我们发射的火箭和宇宙飞船达到第一宇宙速度的时候,它们就能绕着地球做匀速圆周运动,如果这个速度更快,达到所谓的第二宇宙速度,那么飞船或者火箭就能脱离地球引力,飞离地球,这就是逃逸速度。

之所以说兹威基发现的这个现象非常不可思议,是因为按照原有的认知,这个星系团早就应该分崩离析了。于是他提出了一个大胆的猜测,认为这个星系团里面很可能存在一些我们还看不到的物质,它们提供了额外的引力把这些星系牵制住,使得它们不会跑掉。



这是暗物质存在的一个强有力的证据,兹威基现在也是公认的暗物质研究先驱。

1970年左右,人们又发现了另外一个现象,即星系外围物质的运动规律与星系旋转曲线相悖。星系旋转曲线,是指星系中不同位置的天体绕星系中心运动的速度遵循「越靠近太阳,速度越快,越远离太阳,速度越慢」的规律。我们可以根据万有引力定律推算出星系在不同位置的预期速度。



但现实如图所示,我们看到绿色的点越往外速度越快,跟我们的经验完全背道而驰。

这个现象再次指向了此前的猜测——在星系的黑暗区域,很可能存在着大量物质,提供了某种引力,加快了其它天体的运动速度。迄今为止,类似的证据不胜枚举。有人可能心里会犯嘀咕:会不会是爱因斯坦的方程出问题了呢?

这种可能性是完全存在的。爱因斯坦的理论显然不应该是宇宙的终极理论,未来,我们有可能会超越爱因斯坦。在我们对这个问题的研究过程中,有两个值得注意的地方:

第一,我们对爱因斯坦的广义相对论已经做了很充分的检验,在我们力所能及的范围之内,爱因斯坦的理论是精确成立的;

第二,有一些学者也在试图修改爱因斯坦的理论,但事实上很困难,他们所做的修改往往只能够解决某些问题,放到另外的问题上就又说不通了,需要做另外的修改,也就是说,至今未有突破。



这两点告诉我们:如果宇宙中确实存在暗物质,哪怕现在看起来不那么好理解,那么我们这个宇宙反而是更容易理解的。

甚至,暗物质最好是存在的。它的存在对我们来说很关键,因为它可以加速星系的形成。如果宇宙中没有暗物质,就没有银河系,没有太阳系,也就没有我们人类自身。所以说,某种程度上我们也得感谢暗物质,给了我们存在的机会。

02 暗物质是怎样的一种存在?

既然我们相信暗物质的存在,或者说希望它存在,那么它到底是什么样的东西呢?目前,我们对暗物质的理论定义是:通过天文观测推断出来的可能存在于宇宙中的一种不可见物质。这就是把它叫做「暗物质」的原因。



这个动画展示计算机模拟出来的暗物质在宇宙中的分布状况,我们的银河系大概就相当于画面中的一个小点,由此可见宇宙有多么宏大多么壮观!

那么暗物质在其中的占比是多少呢?从能量的角度看,占了68%;从物质的角度看,占了27%;而我们所熟悉的那些普通物质,只有5%。概括地来说,暗物质在宇宙中处于一种稀疏、不均匀分布的状态,在亚星系尺度上有一些团状结构。



理论上说,地球附近包括我们周围也应该有暗物质。根据天文学家的测量,一个立方厘米,就是我们一个手指头这么大的空间里面,暗物质的质量大概等同0.3个氢原子,如果我们把整个地球的暗物质收集起来,总共不到一公斤,所以暗物质对我们的生活几乎没有任何影响。

普通物质是由各种各样的粒子构成的,如果暗物质存在的话,那它可能是什么样的粒子呢?



这个表是粒子物理的标准模型,已知的宇宙都是由这些粒子构成的,但是当我们拿它去跟我们认识到的暗物质属性做比对的时候,却发现没有一种已知的粒子可以满足这些属性。这说明了暗物质很可能是一种超出标准模型的新粒子,更具体来说,是一种弱相互作用的大质量粒子。目前我们对暗物质的认识,也就到这一步。

03 如何寻找暗物质?

既然我们对暗物质有了这么一个框架性的或者叫方向性的认知,下一个问题自然就是:我们能不能探测到这样的粒子,以及如何探测?

目前的办法有这么几种:第一种比较简单粗暴,通过高能粒子对撞,直接把暗物质造出来,但是位于欧洲核子中心的全球最大型粒子对撞机,至今还未发现暗物质的存在。



第二种办法可以叫「入地」。我们身边的这些暗物质粒子,它有可能和我们有一种很微弱的相互作用,需要非常精密的仪器才能探测到,由于空气中有大量的宇宙射线粒子,它们会对实验形成很强的干扰,所以我们必须把实验放在很深的地下实验室去做。

中国在四川锦屏山下建了深地实验室,目前正在开展两个暗物质探测实验,照片上是上海交通大学PandaX暗物质探测团队,虽然至今也还没发现暗物质粒子的信号,但他们对暗物质粒子属性给出了一个很强的约束,已经是目前世界上灵敏度最高的实验结果。



第三种办法就是「上天」,因为暗物质湮灭之后会产生一些标准模型粒子,也就是普通粒子,而地球大气层把这些粒子的大部分都挡在了外面,通过发射卫星探测器,我们在大气之外观察这些宇宙高能射线粒子,可以间接地寻找暗物质。



我们有一颗叫做「悟空」的暗物质粒子探测卫星,它是全世界观测能段最宽、分辨率最高、本底最低的暗物质探测器。



「悟空」这个名字是由一位叫林磊的网友取的,他是一位天文爱好者。这个名字取得非常传神,从字面意思看,是「领悟虚无」,正好跟探测暗物质的这个事情契合;其次,孙悟空有一双能看清宇宙万象的火眼金睛,我们的探测器也应该具备这样的能力。

那么悟空看到了什么东西?



我们去年底发表了第一个成果,在国际上引起了很大的反响。横轴是宇宙射线里一种叫电子的能量,纵轴反映的是不同能量的粒子数。

这个图只是反映我们看到的现象,还有很多无法解释的东西,比方说图上有一个点好像突然就跳上去了,这里是不是存在暗物质呢,还需要进一步的研究。

《自然》和《科学》的社论称,悟空开启了中国空间科学的新纪元。

04 如果找不到暗物质?

如果找不到暗物质怎么办呢?这是我经常被问到的一个问题。

我认为找到暗物质当然很好,那将是一个非常大的进展。但就算没有找到暗物质,也并不代表我们的努力是没有意义的。它意味着我们需要去突破爱因斯坦的理论,我们对宇宙基本规律的认知,还需要一个飞跃。

在热力学能量守恒定律被提出来以前,曾有很多人想制造出「永动机」,尽管最后都以失败而告终,但这些失败的尝试很大程度上推动了我们最终发现能量守恒定律。



图片来自网络

当然,我个人不希望暗物质的探测是这样的一种结局。

人类为什么要探索宇宙?对我而言,就是我为什么要去探索暗物质?即使明知道它对我们生活的影响微乎其微。

回顾历史我们就会发现

基础科学的每一次突破

都会带来技术上的重大飞跃

对我们的思维方式和生活方式产生重大影响

暗物质究竟能够给我们带来什么?

谁又知道呢?
楼主:紫光慧明  时间:2019-11-10 22:37:09

楼主:紫光慧明  时间:2019-11-10 22:42:07

楼主:紫光慧明  时间:2019-11-10 22:46:21
旋转的六十四卦,W一,传递弱相互作用,电子绕原子核旋转。原子产生了。原子的产生是正宇宙中万物的开始。
楼主:紫光慧明  时间:2019-11-10 22:58:54
易经,道德经,佛经,迷信乎?骗人乎?那里面隐藏了宇宙真正的奥秘。之所以都是些隐晦的暗示,是因为即使明示了当时的人类也不懂。而现在,机缘终于慢慢的成熟,它悄悄地来了,机缘等了几千年了,人类可真不容易呀。
楼主:紫光慧明  时间:2019-11-10 23:14:27
宇宙中所有粒子在网状希格斯场中运动产生的阻力即成为粒子的质量。
(同为开弦态之光子;胶子及超微小之引(重)力子不受该场影响,质量仍为零)


楼主:紫光慧明  时间:2019-11-10 23:27:20
暗能量及暗物质
「暗能量」(dark energy),简单的说就是与「宇宙万有引力」完相反的「(反)宇宙万有斥力」简称「反引力」(antigravity force).
早在90多年前,爱因斯坦就推论出「反引力场」(antigravity field)的存在,他称为「宇宙学常数」(cosmological constant),亦称为「宇宙项」,符号为L. 因为有「宇宙学常数」的「反引力」平衡「引力」,故爱因斯坦认为本宇宙是「静态平衡」的,后因发现「哈柏定律」(Hubble’s law)证明「本宇宙」并非「静态」的「平稳不变」,而是「动态」的「膨胀」,同时当时在科技上,亦根本无法证明「宇宙学常数」这个「反引力场」的存在,而且,后来又发现宇宙中有非常多的「黑洞」(black hole),因为「黑洞」具有「强大引力」,而「大型黑洞」甚至能吸入百亿个「太阳」. 由于有这么多的「黑洞」存在,且「黑洞」又能拥有如此「巨大的质量」,因此足以证明「宇宙」不但会「膨胀」又会「收缩」, 绝不是爱因斯坦所认为本宇宙是「静态平衡」的,,因此,爱因斯坦最终以认错收场,并收回了「宇宙学常数-L」的理论,但近年来却发生了大翻盘.
1998年宇宙科学家发现「Ⅰa型超新星」(type Ⅰa supernova)释出的「红移」(red shift)正不断在拉长,这代表本宇宙正在「加速膨胀」(accelerative inflaton),是什么「力量」能把整个庞大的「本宇宙」加速往外拉, 这必然是一股远大于整个本宇宙「引力场」的强大「反引力场」,宇宙科学家,并因此推算出本宇宙早于50亿年前就已开始「加速膨胀」,且这股超强大「反引力场」不但碓实存在,还完全包围着「本宇宙」. 根据2001年NASA发射的「威金森微波异向探测器」(Wilkinson Microwave Anisotropy Probe),简称「WMAP卫星」(见下表,图)藉其高精密的分辨率(Resolving power)已推算出这个超强「反引力场」的能量为「本宇宙」已知物质「总重量(能量)」的15.7倍,因此美国宇宙学家M.Turner为这个超强「反引力场」取了个新名字,就叫作「暗能量」(dark energy),
「暗物质」(dark matter)为结合-恒星, 星系,及超星系团的「不可见物质」(invisible matters), 甚至就存在你我身边,而无法为人发觉. 宇宙中有各种不同能量层级的「暗物质」.「暗物质」即前述各层级「微子」(字尾加ino的粒子)加上「超粒子」(字头加S的粒子)的「超对称伴随子」总称. 且「暗物质区」亦为「10维时空」之间的「能量转换区」. 「暗物质」一词的定义,最早于1933年,由瑞士美籍天文学家-弗利兹.瑞基(Fritz Zwick) 首先提出, 后再经过荷兰天文学家强. 欧特(Jan Oort)于1950年, 推论出太阳系最外围有「欧特云」的笼罩, 自此「暗物质」理论, 得到天文学界的广泛认同,最后直到1990年代才获碓认.
下表为WMAP卫星2008年3月所观测的最新宇宙数据
可见宇宙的年龄
137亿岁(±1.2)亿岁
普通物质(ordinary matters)比率
4.6%
暗物质(dark matter)比率
23.3%
暗能量(dark energy)比率
72.1%
哈伯常数(Hubble constant)
(即宇宙膨胀速度的常数值)
70.1(±1.3)公里/秒/百万秒差3.26光年
宇宙放晴-
即原子形成的宇宙时间
宇宙大霹雳后37.6万年
宇宙是近乎平坦的
故可观测137亿光年宇宙,仅宇宙的小部份
WMAP卫星全名:
「威金森微波异向探测器」:
Wilkinson Microwave Anisotropy Probe

注:超弦理论中与「暗能量」及「宇宙常数L」同意义的场:
1.反德西特空间(anti-de-Sitterspace)
2.反对称张量场(antisymmetrical tensor scalar field)
3.拉蒙标量场
以上均带负的能量,负的曲率及反引力,都是「反(能量)宇宙」的基本特性

下图26维(内)外斥力场即超光速-迅子场





楼主:紫光慧明  时间:2019-11-13 15:31:39
自发对称破缺
(spontaneous symmetry breaking)是某些物理系统实现对称性破缺的模式。当物理系统所遵守的自然定律具有某种对称性,而物理系统本身并不具有这种对称性,则称此现象为自发对称破缺。这是一种自发性过程(spontaneous process),由于这过程,本来具有这种对称性的物理系统,最终变得不再具有这种对称性,或不再表现出这种对称性,因此这种对称性被隐藏。因为自发对称破缺,有些物理系统的运动方程或拉格朗日量遵守这种对称性,但是最低能量解答不具有这种对称性。从描述物理现象的拉格朗日量或运动方程,可以对于这现象做分析研究。
对称性破缺主要分为自发对称破缺与明显对称性破缺两种。假若在物理系统的拉格朗日量里存在着一个或多个违反某种对称性的项目,因此导致系统的物理行为不具备这种对称性,则称此为明显对称性破缺。
如右图所示,假设在墨西哥帽(sombrero)的帽顶有一个圆球。这个圆球是处于旋转对称性状态,对于绕着帽子中心轴的旋转,圆球的位置不变。这圆球也处于局部最大引力势的状态,极不稳定,稍加摄动,就可以促使圆球滚落至帽子谷底的任意位置,因此降低至最小引力势位置,使得旋转对称性被打破。尽管这圆球在帽子谷底的所有可能位置因旋转对称性而相互关联,圆球实际实现的帽子谷底位置不具有旋转对称性──对于绕着帽子中心轴的旋转,圆球的位置会改变。
大多数物质的简单相态或相变,例如晶体、磁铁、一般超导体等等,可以从自发对称破缺的观点来了解。像分数量子霍尔效应(fractional quantum Hall effect)一类的拓扑相(topological phase)物质是值得注意的例外。
量子力学的真空与一般认知的真空不同。在量子力学里,真空并不是全无一物的空间,虚粒子会持续地随机生成或湮灭于空间的任意位置,这会造成奥妙的量子效应。将这些量子效应纳入考量之后,空间的最低能量态,是在所有能量态之中,能量最低的能量态,又称为基态或“真空态”。最低能量态的空间才是量子力学的真空。
设想某种对称群变换,只能将最低能量态变换为自己,则称最低能量态对于这种变换具有“不变性”,即最低能量态具有这种对称性。尽管一个物理系统的拉格朗日量对于某种对称群变换具有不变性,并不意味着它的最低能量态对于这种对称群变换也具有不变性。假若拉格朗日量与最低能量态都具有同样的不变性,则称这物理系统对于这种变换具有“外显的对称性”;假若只有拉格朗日量具有不变性,而最低能量态不具有不变性,则称这物理系统的对称性被自发打破,或者称这物理系统的对称性被隐藏,这现象称为“自发对称破缺”。
回想先前提到的墨西哥帽问题,在帽子谷底有无穷多个不同、简并的最低能量态,都具有同样的最低能量。对于绕着帽子中心轴的旋转,会将圆球所处的最低能量态变换至另一个不同的最低能量态,除非旋转角度为360°的整数倍数,所以,圆球的最低能量态对于旋转变换不具有不变性,即不具有旋转对称性。总结,这物理系统的拉格朗日量具有旋转对称性,但最低能量态不具有旋转对称性,因此出现自发对称破缺现象。[1]
凝聚态物理学
大多数物质的相态可以通过自发对称破缺的透镜来理解。例如,晶体是由原子以周期性矩阵排列形成,这排列并不是对于所有平移变换都具有不变性,而只是对于一些以晶格矢量为间隔的平移变换具有不变性。磁铁的磁北极与磁南极会指向某特定方向,打破旋转对称性。除了这两个常见例子以外,还有很多种对称性破缺的物质相态,包括液晶的向列相(nematic phase)、超流体等等。
类似的希格斯机制应用于凝聚态物质会造成金属的超导体效应。在金属里,电子库柏对的凝聚态自发打破了电磁相互作用的U(1)规范对称性,造成了超导体效应。更详尽细节,请参阅条目BCS理论。
有些物质的相态不能够用自发对称破缺来解释,例如,分数量子霍尔液体(fractional quantum Hall liquid)、旋液体(spin liquid)这一类物质的拓扑学有序相态。这些相态不会打破任何对称性,是不同种类的相态。与自发对称破缺不同,并没有什么通用的理论框架来描述这些相态。[2]
粒子物理学
在粒子物理学里,作用力的媒介粒子通常是由遵守规范对称性的场方程设定;它们的场方程会预估某种测量在场的任意位置会得到同样数值,例如,场方程可能会预估两个夸克A、B的质量是常数。解析这场方程或许给出了两个解,在第一个解里,夸克A比夸克B沉重,而在第二个解里,以同样的重量差,夸克B比夸克A沉重。对于这案例,场方程的对称性并没有被场方程的任意一个单独解反映出来,而是被所有解共同一起反应出来。由于每一次做实际测量只能得到其中一个解,这表征了所倚赖理论的对称性被打破。对于这案例,使用术语“隐藏”可能会比术语“打破”更为恰当,因为对称性已永远嵌入在场方程里。由于物理学者并未找到任何外在因素涉及到场方程的对称性破缺,这现象称为“自发”对称性破缺。
手征对称性破缺
在粒子物理学里,手征对称性破缺指的是强相互作用的手征对称性被自发打破,是一种自发对称破缺。假若夸克的质量为零(这是手征性(chirality)极限),则手征对称性成立。但是,夸克的实际质量不为零,尽管如此,跟强子的质量相比较,上夸克与下夸克的质量很小,因此可以视手征对称性为一种“近似对称性”。
在量子色动力学的真空里,夸克与反夸克彼此会强烈吸引对方,并且它们的质量很微小,生成夸克-反夸克对不需要用到很多能量,因此,会出现夸克-反夸克对的夸克-反夸克凝聚态,就如同在金属超导体里电子库柏对的凝聚态一般。夸克-反夸克对的总动量与总角动量都等于零,总手征荷不等于零,所以,夸克-反夸克凝聚的真空期望值(vacuum expectation value)不等于零,促使物理系统原本具有的手征对称性被自发打破,这也意味着量子色动力学的真空会将夸克的两个手征态混合,促使夸克在真空里获得有效质量。
根据戈德斯通定理,当连续对称性被自发打破后必会生成一种零质量玻色子,称为戈德斯通玻色子。手征对称性也具有连续性,它的戈德斯通玻色子是π介子。假若手征对称性是完全对称性,则π介子的质量为零;但由于手征对称性为近似对称性,π介子具有很小的质量,比一般强子的质量小一个数量级。这理论成为后来电弱对称性破缺的希格斯机制的初型与要素。
根据宇宙学论述,在大爆炸发生10-6秒之后,开始强子时期,由于宇宙的持续冷却,当温度下降到低于临界温度KTc≈173MeV之时,会发生手征性相变(chiral phase transition),原本具有的手征对称性的物理系统不再具有这性质,手征对称性被自发性打破,这时刻是手征对称性的分水岭,在这时刻之前,夸克无法形成强子束缚态,物理系统的有序参数反夸克-夸克凝聚的真空期望值等于零,物理系统遵守手征对称性;在这时刻之后,夸克能够形成强子束缚态,反夸克-夸克凝聚的真空期望值不等于零,手征对称性被自发性打破。
希格斯机制
在标准模型里,希格斯机制是一种生成质量的机制,能够使基本粒子获得质量。为什么费米子、W玻色子、Z玻色子具有质量,而光子、胶子的质量为零?希格斯机制可以解释这问题。希格斯机制应用自发对称破缺来赋予粒子质量。在所有可以赋予规范玻色子质量,而同时又遵守规范理论的可能机制中,这是最简单的机制。根据希格斯机制,希格斯场遍布于宇宙,有些基本粒子因为与希格斯场之间相互作用而获得质量。
更仔细地解释,在规范场论里,为了满足局域规范不变性,必须设定规范玻色子的质量为零。由于希格斯场的真空期望值不等于零,造成自发对称破缺,因此规范玻色子会获得质量,同时生成一种零质量玻色子,称为戈德斯通玻色子,而希格斯玻色子则是伴随着希格斯场的粒子,是希格斯场的振动。通过选择适当的规范,戈德斯通玻色子会被抵销,只存留带质量希格斯玻色子与带质量规范矢量场。
费米子也是因为与希格斯场相互作用而获得质量,但它们获得质量的方式不同于W玻色子、Z玻色子的方式。在规范场论里,为了满足局域规范不变性,必须设定费米子的质量为零。通过汤川耦合,费米子也可以因为自发对称破缺而获得质量。[3]
实例
铁磁性物质对于空间旋转的不变性与居里温度有关。这物理系统的有序参数(order parameter)是量度磁偶极矩的磁化强度。假设温度高过居里温度,则自旋的取向是随机的,无法形成磁偶极矩,有序参数为零,基态对于空间旋转具有不变性,不存在对称性破缺。假设将系统冷却至温度低于居里温度,则自旋的取向会指向某特定方向,磁化强度不等于零,方向与自旋相互平行,基态不再具有旋转对称性,物理系统的旋转对称性被打破,产生自发对称破缺现象,只剩下对于磁化强度所指方向的圆柱对称性。
描述固体的定律在整个欧几里德群(Euclidean group)之下具有不变性,但是固体自己将这欧几里德群打破为空间群(space group)。位移与取向是有序参数。
广义相对论具有洛伦兹对称性,但是在弗里德曼-罗伯逊-沃尔克模型里,将星系速度(在宇宙学尺寸,星系可以视为气体粒子)做平均而得到的平均四维速度场,变成打破这对称性的有序参数。关于宇宙微波背景也可以做类似论述。
在弱电相互作用模型里,希格斯场的真空期望值(vacuum expection value)是将电弱规范对称性打破成为电磁规范对称性的有序参数。如同铁磁性物质实例,这里也存在有电弱临界温度,在这临界温度会发生相变。
设想一根圆柱形细棒的两端被施加轴向应力,在发生屈曲(buckling)之前的状态S0,整个系统对于以细棒为旋转轴的二维旋转变换具有对称性,因此可以观察到这系统的旋转对称性,可是这状态不是最低能量态,因为有应力能量储存于细棒的微观结构内,这状态极不稳定,稍有摄动就可以促使发生屈曲,释出应力能量,跃迁至最低能量态。注意到细棒有无穷多个最低能量态做选择,这些最低能量态之间因旋转对称性关联在一起,细棒可以选择跃迁至其中任意一个最低能量态,在发生屈曲之后的状态,完全改观为非对称性。尽管如此,仍旧存了旋转对称性的一些特征:假若忽略阻力,则不需施加任何作用力就可以自由地将细棒旋转,变换到另外一个最低能量态,这旋转模态实际就是不可避免的戈德斯通玻色子。
设想在无限宽长的水平平板上,有一层均匀厚度的液体。这物理系统具有欧几里德平面的所有对称性。现在从底部将平板均匀加热,使得液体的底部温度大于顶部温度很多。当温度梯度变得足够大的时候,会出现对流胞(convection cell),打破欧几里德对称性。
楼主:紫光慧明  时间:2019-11-13 15:47:55
普朗克时间


普朗克时间,是指时间量子间的最小间隔,即普朗克时间,为 1E-43秒(即10^-43s)。没有比这更短的时间存在。普朗克时间=普朗克长度/光速。(注:1普朗克时=0.0000000000000000000000000000000000000000001秒)。在100多年前的1900年,物理学家马克斯•普朗克发现,能量可以分为不可再分割的单位,并将其命名为“量子”。这样的一份能量叫做能量子,每一份能量子等于hv,v为辐射电磁波的频率,h为一常量,叫为普朗克常数。普朗克常数用以描述量子化,微观下的粒子,例如电子及光子,在一确定的物理性质下具有一连续范围内的可能数值。



楼主:紫光慧明  时间:2019-11-13 15:53:56
100多年前的1900年,物理学家马克斯•普朗克发现,能量可以分为不可再分割的单位,并将其命名为“量子”。为了描述量子的体积,人们通常使用基本量子即普朗克量子来形容。这一发现标志着量子力学的诞生,其对科学发展起的作用超出普朗克本人的想像。例如,把普朗克量子同光速和其他常数结合在一起,就可以得出空间和时间方面不可分割的量子,也就是最短的距离单位和最短的时间单位。普朗克长度为10的-35次方米。普朗克时间为10的-43次方秒。
如何超越普朗克长度和普朗克时间还是个谜,因为现行物理定律在这个范围内就失效了。因此,宇宙论学者在研究宇宙起源时,在大爆炸之后,最多就能计算到10的-43次方秒。要研究普朗克时间之前发行的事,还缺乏新定律。这种新定律,理论物理学家已研究几十年了。
经典广义相对论的奇性不可避免,所以标准大爆炸模型中时空存在着零点,给了上帝一个容身之地。但是考虑到量子力学的测不准原理,一些基本量度,譬如长度和时间具有测不准性。测不准的程度由普朗克常数确定,从该常数可以定出最小的长度量子,即普朗克长度,为10E-33厘米,这远远小于原子核的尺度。测量任何长度不可能比这个更精确,而且比普朗克长度更短的长度是没有意义的。同样,作为时间量子的最小间隔,即普朗克时间,为10E-43秒。没有比这更短的时间存在。这就是说,我们不可能把黑洞缩减为数学上的一个点,同样也不能追溯到大爆炸的真正开始时刻。
运算
普朗克尺度,即HBAR,C,G都取为一时得到的时间,长度,质量尺度。
普朗克长度l=gh/c3~10-35m=10E-33厘米
普朗克常数也使用于海森堡不确定原理。在位移测量上的不确定量(标准差)Δx ,和同方向在动量测量上的不确定量 Δp,有如下关系:
正在加载查看图片集
原理
正在加载查看图片集
普朗克长度lp计算如右图,单位:米,普朗克时间为tp=lp/c= 5.39121(40) × 10^-44秒,
c为真空中光速,G为万有引力常数(引力常量),G=6.67259×10^-11N.m^2/kg^2,普朗克常数记为 h ,是一个物理常数,用以描述量子大小。在量子力学中占有重要的角色,马克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能
和试验结果是相符。这样的一份能量叫做能量子,每一份能量子等于hv,v为辐射电磁波的频率,h为一常量,叫为普朗克常数。普朗克常数的值约为:
正在加载查看图片集
h=6.6260693(11)×10^-34 J·s,

h=4.13566743(35)×10^-15 eV·
其中电子伏特(eV)·秒(s)为能量单位:
普朗克常数的物理单位为能量乘上时间,也可视为动量乘上位移量:
(牛顿(N)·米(m)·秒(s))为角动量单位
另一个常用的量为约化普朗克常数(reduced Planck constant),有时称为狄拉克常数(Dirac constant),纪念保罗·狄拉克:
其中 π 为圆周率常数 pi。 念为 "h-bar" 。
普朗克常数用以描述量子化,微观下的粒子,例如电子及光子,在一确定的物理性质下具有一连续范围内的可能数值。例如,一束具有固定频率 ν 的光,其能量 E 可为:
有时使用角频率 ω=2πν :
许多物理量可以量子化。譬如角动量量子化。 J 为一个具有旋转不变量的系统全部的角动量, Jz 为沿某特定方向上所测得的角动量。其值:
因此, 可称为 "角动量量子"。
普朗克常数也使用于海森堡不确定原理。在位移测量上的不确定量(标准差) Δx ,和同方向在动量测量上的不确定量 Δp,有如下关系:
还有其他组物理测量量依循这样的关系,例如能量和时间。
楼主:紫光慧明  时间:2019-11-13 16:29:14
马克思·普朗克(Max Planck,1858-1947),近代伟大的德国物理学家,量子论的奠基人,1858年4月23日生于基尔。1900年,他在黑体辐射研究中引入能量量子。由于这一发现对物理学的发展做出的贡献,他获得1918年诺贝尔物理学奖。在纳粹攫取德国政权后,他以一个科学家对科学、对祖国的满腔热情与纳粹分子展开了为捍卫科学的尊严而斗争。1947年10月3日,普朗克在哥廷根病逝,终年89岁。普朗克的墓在哥廷根市公墓内,其标志是一块简单的矩形石碑,上面只刻着他的名字,下角写着:尔格·秒。
普朗克,一位具有伟大人格的物理学家。量子力学之父。
楼主:紫光慧明  时间:2019-11-13 17:05:21
爱因斯坦曾说:「与普朗克一起生活是一件快乐的事。」
迈特涅尔也说:「普朗克内心纯洁、公正,与他外表的谦虚完全一致。」
普朗克的量子理论成为现代物理学的第一章,也 是最基本的一章。爱因斯坦对普朗克的量子理论评价说:「这一发现成为20世纪整个物理学研究的基础,从那个时候起几乎完全决定了物理学的发展。要是没有这一发现,那就不可能建立起分子、原子以及支配它们变化的能量过程的有用的理论。」从而肯定了普朗克对物理学发展的不朽贡献。
普朗克是一位老派的学者。他为人正直高尚、奉公守法、谦虚谨慎,从来不愿意炫耀自己。他自称没有特殊的天才,不能同时处理许多不同的问题。在学术工作中,他主张尽可能地谨慎,不到万不得已不愿意打破传统的“框框”。他把自己的量子假说称为“孤注一掷”的办法。就是说,只是在实验事实的逼迫下,他才终于“上了梁山”。因此,人们常说他是一个“不情愿的革命者”。
楼主:紫光慧明  时间:2020-05-12 00:37:02
弦即一,道即零。弦理论即是用西方人的数学手段研究这个微妙的“一”,而一的上面是零。道生一,一生二,二生三,三生万物。研究万物的是物理学,化学,生物学等自然科学和社会科学。研究三这个层次的主要是近代物理学了。研究二这个层次的主要是量子力学。己研究了百年,而现在,研究一这个层次的主要是超弦理论了。因为目前人类还无法对超弦理他做物理实验进行验证,还只能停留在假说阶段。
楼主:紫光慧明  时间:2020-05-12 00:45:57
很遗憾,无论是对三,二,一的研究,全部是起源于西方。此贴也好久没有更新了。当今中国,人们都在狡尽脑汁的去赚钱,去谋生,去发展时,还会有几个人去关注,去探索宇宙的起源呢?这次,超弦理论的产生,发展,对“一”的研究,又被西方人夺得了先机。很是无奈。所幸,对一的研究,甚为艰难,按照西方人目前的思路走下去,恐怕几十年之内难有突破。我们还有赶超的机会。
楼主:紫光慧明  时间:2020-05-12 01:12:56
其实这里的关键就是一个亚稳态转换的问题。如何调控定向聚集意念能,并使外物(包括非生物,动物,他人,自身)加速分解虚化为时空波,并在意念调控下定向移动至目的地,然后降速实体粒子化还原为本体。就这一条,就难倒了全世界所有的物理学家。普通人的意念力微乎其微,几乎可以忽略不计。就好像使出一克的推力就想让手中的纸飞机克服地球引力和大气层的阻力飞出地球奔向火星一样。只是一种幻想。我们可以设想,普通人的意念力再弱,和零还是有本质的区别的。就像你在一杯白开水中加了一毫克的白糖,你怎么用心都喝不出甜味来,但也却不能说你的白开水里没有糖。只是你的味蕾感觉不到这微弱甜味的刺激而己。
楼主:紫光慧明  时间:2021-07-04 22:03:51
有人想看你,你出去吧。

大家都在看

猜你喜欢

热门帖子

TOP↑